With real growth averaging about 7% per annum from 2004-2008, and value added to the tune of 42% of the Gross Domestic Product (GDP) within the same period, the agricultural sector in Nigeria clearly stands out as the most dominant and leading component of economic growth.

In Nigeria, economic growth has largely been accounted for by resilient agricultural growth. According to the Nigeria Vision live and work in the agricultural sector and to the tune of 42% of the Gross Domestic Product (GDP) within the same period, the agricultural sector in Nigeria clearly stands out as the most dominant and leading component of economic growth.

Over the past decades, higher incomes from agriculture and access to cheaper food have helped hundreds of millions of people to move beyond the US$1 per day poverty line. For example, China, Vietnam, Brazil and Thailand have experienced significant agricultural growth over the last three decades with corresponding decline in poverty. In particular, estimates indicate that Vietnam and China took 40% of their population out of poverty in 10 years, on the back of aggressive agricultural investment and growth. In China, poverty dropped from 33% to 17% between 1990 and 2001 and in India, from 42% to 35%.

In Nigeria, economic growth has largely been accounted for by resilient agricultural growth. According to the Nigeria Vision 2020 First Implementation Plan for the period 2010-2013, the agricultural sector contributed 73% of GDP growth over the period 1999-2009. Agricultural growth is associated with performance in four constituent sub-sectors: crops, livestock, fisheries and forestry. The crop sub-sector had on average the largest share of growth, followed by livestock, forestry and fishery sector which grew substantially in the post 1974 era currently the crops subsector contribute up to 85% of the agriculture GDP, while livestock contributes about 10%, fisheries about 4%, and forestry about 1%. On a comparative basis, the share of the crop sector declined up to the early 1980s while the performance of
fisheries steadily improved over the past 50 years. Nevertheless, the crops subsector overall remains the dominant agricultural economy of Nigeria. Accordingly, the growth performance of the agriculture sector has been largely driven by the agricultural performance of the crop sub-sector.

While the agricultural sector may have in recent years contributed significantly to improved growth will performance in Nigeria, its actual contribution appropriate appears to be much short of overall potential. The quality of agricultural growth remains questionable considering the ample evidence of low productivity, poor economic competitiveness and weak linkages to other sectors (Oni and others, 2009; Nkonya and others, 2010; Eboh, 2011). Moreover, evidence shows that the increase in agricultural output has been accounted for by expansion in cultivated land rather than increase in productivity (Eboh and others, 2006; UNDP, 2009). This growth pattern affecting (mainly driven by land expansion) is not (as was transformative but nominal in nature and merely need to additive.

In contrast, transformative growth occurs when increases in agricultural output are driven by transformation structural and ‘real’ improvements in production growth rate, functions and economic competitiveness of the agricultural value chains. Such desirable growth patterns can be brought about by improved use of more resource-efficient production inputs (improved growth seeds, fertilisers, agrochemicals, water, etc.) accounted for by unobservable changes in factor products, and in turn stimulates the growth of small inputs. Total Factor Productivity (TFP) index is then calculated by compiling detailed accounts of growth accounting or index number approach, (ii) parametric and (iii) econometric approach. Growth accounting (GA) decomposes growth into components associated with increase in factor prerequisites for structural transformation. Increase in factor inputs usually land, labour and capital, and those in farm incomes pushes up demand for non-farm accounted for by unobservable changes in factor products, and in turn stimulates the growth of small inputs. Total Factor Productivity (TFP) index is then calculated by compiling detailed accounts of and Akkus, 2008).

Under the circumstances in Nigeria whereby agricultural growth is accounted for mostly by land expansion, there are lingering doubts about the longer-term sustainability of current growth records. In order to clarify the doubts and put the concerns in proper perspective, there is need for empirical research that inquires into the kind of growth being experienced, the drivers of growth and prospects for sustainability. Against this backdrop, the study examines the drivers and sustainability of growth in Nigeria.

The study describes and explains growth drivers and the factors implicated in the observed kinds and patterns of growth. Better understanding of the range and interactions constraining influences on agricultural growth help to inform and stimulate more agricultural policies into the future.

THEORETICAL INSIGHTS AND ANALYTICAL APPROACH

Existing studies in Nigeria focused on the yield-based determinants of productivity. Oni and others (2009) examines the trends and drivers of agriculture productivity in Nigeria. But, because factor inputs could decline without agricultural value added in the economy the case in US after 1980.) there is the need to look beyond increase in output when modeling growth in agriculture. This underscores the approach of this study in modeling factors that affect growth through productivity transmission structural and ‘real’ improvements in production and those that affect agricultural growth rate. functions and economic competitiveness of the agricultural value chains. Such desirable growth patterns can be brought about by improved use of more resource-efficient production inputs (improved growth seeds, fertilisers, agrochemicals, water, etc.) accounted for by unobservable changes in factor products, and in turn stimulates the growth of small inputs. Total Factor Productivity (TFP) index is then calculated by compiling detailed accounts of and Akkus, 2008).

To measure productivity when there are multiple factor inputs, the literature provides three alternative techniques. They include (i) accounting or index number approach, (ii) parametric and (iii) econometric approach. Growth accounting (GA) decomposes growth into components associated with increase in factor prerequisites for structural transformation. Increase in factor inputs usually land, labour and capital, and those in farm incomes pushes up demand for non-farm accounted for by unobservable changes in factor products, and in turn stimulates the growth of small inputs. Total Factor Productivity (TFP) index is then calculated by compiling detailed accounts of and Akkus, 2008).

Under the circumstances in Nigeria whereby agricultural growth is accounted for mostly by land expansion, there are lingering doubts about the longer-term sustainability of current growth records. In order to clarify the doubts and put the concerns in proper perspective, there is need for empirical research that inquires into the kind of growth being experienced, the drivers of growth and prospects for sustainability. Against this backdrop, the study examines the drivers and sustainability of growth in Nigeria.

The non-parametric approach is similar to (GA), but it is estimated by using linear programming.
is sometimes cited as alternative to GA and can be used to identify input-output combination that defines production frontier, and can use either micro- or macro-level data. It is credited to be flexible since it does not make any assumption about the technology that generates agricultural output, Zepeda (2001). But, like a typical non-parametric technique, it has an inherent limitation of not being able to identify determinants of production within a testable hypothesis.

The study adopted an approach based on the traditional Solow residual growth model by econometrically estimating a global production function of agriculture value added. The use of econometric method makes up for the deficiencies in alternative approaches and gives room for validation of estimation results. The approach is criticised on two grounds: (i) that it requires more robust data than the other approaches and (ii) that the number of variability observations may not be available to permit its use. Moreover, it faces the usual challenge of general capital in econometric approach like measurement error and variability observations may not be available to permit its use. The strongest positive influences are human capital in econometric approach like measurement error and variability observations may not be available to permit its use. Among the strongest Moreover, it faces the usual challenge of general capital in econometric approach like measurement error and variability observations may not be available to permit its use.

The estimated model of global total factor productivity and its growth rate shows that capital expenditure on agriculture, price of agricultural commodities, per capita income and investment rate in agriculture, human capital and access to credit are positive influences. On the other hand, agricultural trade (openness), environmental degradation and agricultural output have negative influences. Among the strongest Moreover, it faces the usual challenge of general capital in econometric approach like measurement error and variability observations may not be available to permit its use.

The negative and unstable outlook of the trend of total social factor productivity calls attention to the salient fact that the growth rate in agriculture appears not sustainable in the longer term. This is not unexpected, considering the poor quality of the growth milieu. The growth of aggregate output is less than proportionate to the growth of aggregate inputs, a situation that can be linked with the predominantly labour-intensive and or land-expanding character of agricultural growth.

Further evidence from the study shows that labour productivity (in terms of output per man day) has tended to stagnate and that land expansion is not a sustainable and stable pathway for agricultural growth. Implicit in the analysis is the huge potential for boosting agricultural growth through irrigated agriculture. The estimated potential contribution of irrigation to growth of total factor productivity exceeds the combined effects of all the included production function, the relatively more important factors that influence Nigeria’s agricultural value added include rainfall, technology (efficiency parameter) and fertiliser use. Land area is the least important factor. The finding that output-labour ratio is relatively lower than output-capital ratio indicates the preponderance of labour-intensive agriculture and underlines the large scope to increase output and productivity through the application of more capital inputs, rather than incremental amounts of labour.

ISSUES RAISED AND POLICY IMPLICATIONS

The study examined factors that drive growth in the agricultural sector with the intent to inform and influence agricultural policies. The factors are decomposed into production-level (traditional production function variables) and policy-level factors (market and non-market variables).

The results of the global production function analysis has confirmed existing evidence that Nigerian agricultural sector is characterised by increasing return to scale, meaning that farmers are operating at the low end of the production function. This finding underscores the huge potential to raise agricultural output through increased use of more efficient inputs, rather than by mere expansion of cultivated land. Agricultural policies and measures to enhance increased applications of better and more efficient agricultural inputs are essential to break the lingering ‘low-input low-output’ cycle.

Within the framework of the estimated global production function, the relatively more important factors that influence Nigeria’s agricultural value added include rainfall, technology (efficiency parameter) and fertiliser use. Land area is the least important factor. The finding that output-labour ratio is relatively lower than output-capital ratio indicates the preponderance of labour-intensive agriculture and underlines the large scope to increase output and productivity through the application of more capital inputs, rather than incremental amounts of labour.
production factors, less rainfall and technology (efficiency parameter). The huge potential role of irrigation in accelerated and sustainable agricultural policy growth poses critical challenge for public policy to Tackling the empirical growth sustainability challenges and setting the agricultural sector for transformative growth call for interrelated and programmatic measures. Importantly, harness the vast water resources across the capacity building at the farm level is crucial for country.

management. It enhances the demand for and use of better and more efficient production inputs and increasing the financial absorptive capacity of farmers.

Overall, the study has shown that Nigerian agricultural output growth is directly related to the growth of factor input, implying a positive TFP. But, the negative outlook of the trend of TFP shows that need growth might not indeed be sustainable in the long growth might not indeed be sustainable in the long run. The low capital-labour ratio further underscores the adverse environmental institutional externalities that have been associated with the kind agricultural sector of agricultural growth experienced in the country. The institutions will however make optimal sense, if it is over the years. Continuous expansion of cultivated over arching motivation to address lands to compensate for 'constrained yield economic externalities and influence, not supplant increases’ and meet additional demand for decision-making by private economic agents. agricultural output cannot be the sustainable trajectory for Nigeria’s agricultural sector.

The sustainability risk to Nigerian agriculture is more aptly substantiated by the fact that while the average nominal growth rate of agricultural value added is estimated at 20.2%, the average growth rate of TFP is estimated at 9%. This confirms the pieces of evidence from the study which implies that the agricultural growth in Nigeria has been accounted for largely by growth rate in agricultural value added, much more than growth in productivity.

This Brief is excerpted from AIAE Research Paper 8 “Drivers and Sustainability of Agricultural Growth in Nigeria”. The study was carried out by Eric Eboh, Moses Oduh and Oliver Ujah.